China Professional Tapered Roller Bearing 32307/Tractor Bearing/Auto Parts/Car Accessories/Roller Bearing near me supplier

Product Description

Tapered Roller Bearing 32307/Tractor Bearing/Auto Parts/Car Accessories/Roller Bearing

Feature

  • Quality Materials
  • Precision Tolerance
  • Optimizing Internal Geometries

 

Sr.No. Bearing No. Dimension (MM)
d D
1 32004 20 42 12
2 32005 25 47 15
3 32006 30 55 17
4 32007 35 62 18
5 32008 40 68 19
6 32009 45 75 20
7 32571 50 80 20
8 32011 55 90 23
9 32012 60 95 23
10 32013 65 100 23
11 32014 70 110 25
12 32015 75 115 25
13 32016 80 125 29
14 32017 85 130 29
15 32018 90 140 32
16 32019 95 145 32
17 32571 100 150 32
18 35712 15 35 11.75
19 35713 17 40 13.25
20 35714 20 47 15.25
21 35715 25 52 16.25
22 35716 30 62 17.25
23 35717 35 72 18.25
24 35718 40 80 19.75
25 35719 45 85 20.75
26 35710 50 90 21.75
27 35711 55 100 22.75
28 35712 60 110 23.75
29 35713 65 120 24.75
30 35714 70 125 26.25
31 35715 75 130 27.25
32 35716 80 140 28.25
33 35717 85 150 30.5
34 35718 90 160 32.5
35 35719 95 145 32
36 30302 15 42 14.25
37 30303 15 47 15.25
38 30304 20 52 16.25
39 30305 25 62 18.25
40 30306 30 72 20.75
41 30307 35 80 22.75
42 30308 40 90 25.25
43 30309 45 100 27.25
44 3571 50 110 29.25
45 3571 55 120 31.5
46 3571 60 130 33.5
47 3571 65 140 36
48 3571 70 150 38
49 3571 75 160 40
50 32204 20 47 19.5
51 32205 25 52 19.25
52 32206 30 62 21.25
53 32207 35 72 24.25
54 32208 40 80 24.75
55 32209 45 85 24.75
56 32210 50 90 24.75
57 32211 50 100 26.75
58 32212 60 110 29.75
59 32213 65 120 32.75
60 32214 70 125 33.25
61 32215 75 130 33.25
62 32216 80 140 35.25
63 32217 85 150 38.5
64 32218 90 160 42.5
65 32305 25 62 25.25
66 32306 30 72 28.75
67 32307 35 80 32.75
68 32308 40 90 35.25
69 32309 40 100 38.25
70 32310 50 110 42.25
71 32311 55 120 45.5
72 32312 60 130 48.5
73 32313 65 140 51
74 7813E 65 110 30.5
75 7814E 70 117 33
76 7815E 75 135 44.8
77 7816E 80 140 45
78 31305 25 62 17
79 31306 30 72 21
80 31307 35 80 21
81 31308 40 90 23
82 31309 45 100 25
83 31310 50 110 27
84 31311 55 130 31.5
85 31312 60 130 31
86 31313 65 140 33
87 31314 70 150 38
88 7713 65 130 45
89 33005 25 47 17
90 33006 30 55 20
91 33007 35 62 20
92 33008 40 68 22
93 33009 45 75 24
94 33571 50 80 24
95 33011 55 90 27
96 33012 60 95 27
97 33013 65 100 27
98 33014 70 110 31
99 33015 75 115 31
100 33108 40 75 26
101 33109 45 80 26
102 33110 50 85 26
103 33111 55 95 30
104 33112 60 100 30
105 33113 65 110 34
106 33114 70 120 37
107 33115 75 125 37
108 33116 80 130 37
109 33117 85 140 41
110 33118 90 150 45
111 33205 25 52 22
112 33206 30 60 25
113 33207 35 72 28
114 33208 40 80 32
115 33209 45 85 32
116 33210 50 90 32
117 33211 55 100 35
118 33212 60 110 38
119 33213 65 120 41
120 33214 70 125 41
121 33215 75 130 41
122 LM11749/10 17.462 39.878 13.843
123 LM11949/10 19.05 45.237 15.494
124 LM12749/10 21.986 45.237 15.494
125 LM12749/11 21.986 45.974 15.494
126 LM12649/10 21.43 50.005 17.526
127 LM67048/10 31.75 59.131 15.875
128 LM78349/10 34.988 61.973 16.7
129 LM48548/10 34.925 65.088 18.034
130 LM300849/11 40.988 67.975 17.5
131 LM501349/10 41.275 73.431 19.558
132 LM157149/10 45.242 73.431 19.558
133 LM503349/10 45.987 74.976 18
134 LM603049/10 45.242 77.788 19.842
135 L45449/10 29 50.292 14.224
136 L44643/10 25.4 50.292 14.224
137 L44649/10 26.98 50.292 14.244
138 L68149/10 34.98 59.131 15.875
139 L68149/11 34.98 59.975 15.875
140 JL69349/10 38 63 17
141 M84548/10 25.4 57.15 19.431
142 M88048/10 33.338 68.262 22.225
143 HM88648/10 35.717 72.233 25.4
144 JLM104948/10 50 82 21.5
145 HM518445/10 88.9 152.4 39.688
146 32909 45 68 15
147 29590/29522 66.675 107.95 19.05
148 320/32 58 32 17


Product Description
 

  • Tapered roller bearing normally be composed of a cup and a cone assembly, it precisely designed to manage both axial and radial load, even in the most unforgiving conditions . Single row tapered roller bearings are the most basic and widely used, CZPT built the first production lines in 1996 and today offers the world’s widest variety both in inch and metric sizes.
     
    1. with performance-enhancing features for severe-duty applications, VAFEM LM-Series wheel bearings help increase fuel efficiency, improve load-carrying capacity, fit in popular axle and hub designs – and simplify installation – helping you gain fleet uptime. Commercial Vehicle Hub Rebuild Kits are available for severe duty, dual and wide single tire applications .

 

  • Design Attributes:
  1. Raw material: Manufactured with reliable  super-clean chrome steel, these long-lasting bearings are designed to meet severe-duty application requirements.
  2. Tight tolerances: Uniform internal geometry, including angle of contact for cones and rollers, creates a precise match between cup and cone – extending bearing life.
  3. Precision profiles: Internal raceway profiles reduce stress on bearing components by distributing the loads evenly across contact surfaces – increasing load-carrying capacity.
  4. Super finishing surface: Advanced automatic finishing processes generate smoother surface finishes on races and rollers to reduce friction – helping increase fuel efficiency.
  5. Flexibility: Engineered for severe-duty applications in any configuration – dual and wide singles – LM-Series wheel bearings maintain consistency and simplicity within fleets.
  6. Compatibility: LM-Series wheel bearings fit popular axle and hub designs, allowing retrofit into existing equipment.

Design Attributes:

  • Accurate Bearing Setting: Set-Right kits feature bearings that significantly reduce the width variation found in standard bearings. Our tight bearing width tolerance enables consistent and accurate bearing setting of pre-adjusted hubs.
  • Consistent Bearing Setting: Consistently achieve proper wheel bearing setting, avoiding the need for manual bearing adjustment and promoting optimum bearing and seal life.
  • Streamlined Inventory Management: With a wide range of part numbers, each kit features 2 VAFEM  matched bearing sets and a precision-machined spacer (various of spacer types available).
  • More Uptime: manufactured with super-clean high-strength chrome steel, precision profiles and enhanced surface finishes, feature high load ratings, and outlast and outperform competitor bearings.
    Longer Bearing Life and Performance
  1. As a domestic leader in roller bearing technology, we develop bearings to outlast and outperform those frequently used on original equipment.

 
Applications
 

  • Commercial vehicles  (original equipment and aftermarket)
  • Wheel hub Kits ( After market )
  • Heavy duty trucks, tractors and construction machinery (original equipment and aftermarket)

 

Screw Shaft Features Explained

When choosing the screw shaft for your application, you should consider the features of the screws: threads, lead, pitch, helix angle, and more. You may be wondering what these features mean and how they affect the screw’s performance. This article explains the differences between these factors. The following are the features that affect the performance of screws and their properties. You can use these to make an informed decision and purchase the right screw. You can learn more about these features by reading the following articles.

Threads

The major diameter of a screw thread is the larger of the 2 extreme diameters. The major diameter of a screw is also known as the outside diameter. This dimension can’t be directly measured, but can be determined by measuring the distance between adjacent sides of the thread. In addition, the mean area of a screw thread is known as the pitch. The diameter of the thread and pitch line are directly proportional to the overall size of the screw.
The threads are classified by the diameter and pitch. The major diameter of a screw shaft has the largest number of threads; the smaller diameter is called the minor diameter. The thread angle, also known as the helix angle, is measured perpendicular to the axis of the screw. The major diameter is the largest part of the screw; the minor diameter is the lower end of the screw. The thread angle is the half distance between the major and minor diameters. The minor diameter is the outer surface of the screw, while the top surface corresponds to the major diameter.
The pitch is measured at the crest of a thread. In other words, a 16-pitch thread has a diameter of 1 sixteenth of the screw shaft’s diameter. The actual diameter is 0.03125 inches. Moreover, a large number of manufacturers use this measurement to determine the thread pitch. The pitch diameter is a critical factor in successful mating of male and female threads. So, when determining the pitch diameter, you need to check the thread pitch plate of a screw.
screwshaft

Lead

In screw shaft applications, a solid, corrosion-resistant material is an important requirement. Lead screws are a robust choice, which ensure shaft direction accuracy. This material is widely used in lathes and measuring instruments. They have black oxide coatings and are suited for environments where rusting is not acceptable. These screws are also relatively inexpensive. Here are some advantages of lead screws. They are highly durable, cost-effective, and offer high reliability.
A lead screw system may have multiple starts, or threads that run parallel to each other. The lead is the distance the nut travels along the shaft during a single revolution. The smaller the lead, the tighter the thread. The lead can also be expressed as the pitch, which is the distance between adjacent thread crests or troughs. A lead screw has a smaller pitch than a nut, and the smaller the lead, the greater its linear speed.
When choosing lead screws, the critical speed is the maximum number of revolutions per minute. This is determined by the minor diameter of the shaft and its length. The critical speed should never be exceeded or the lead will become distorted or cracked. The recommended operational speed is around 80 percent of the evaluated critical speed. Moreover, the lead screw must be properly aligned to avoid excessive vibrations. In addition, the screw pitch must be within the design tolerance of the shaft.

Pitch

The pitch of a screw shaft can be viewed as the distance between the crest of a thread and the surface where the threads meet. In mathematics, the pitch is equivalent to the length of 1 wavelength. The pitch of a screw shaft also relates to the diameter of the threads. In the following, the pitch of a screw is explained. It is important to note that the pitch of a screw is not a metric measurement. In the following, we will define the 2 terms and discuss how they relate to 1 another.
A screw’s pitch is not the same in all countries. The United Kingdom, Canada, and the United States have standardized screw threads according to the UN system. Therefore, there is a need to specify the pitch of a screw shaft when a screw is being manufactured. The standardization of pitch and diameter has also reduced the cost of screw manufacturing. Nevertheless, screw threads are still expensive. The United Kingdom, Canada, and the United States have introduced a system for the calculation of screw pitch.
The pitch of a lead screw is the same as that of a lead screw. The diameter is 0.25 inches and the circumference is 0.79 inches. When calculating the mechanical advantage of a screw, divide the diameter by its pitch. The larger the pitch, the more threads the screw has, increasing its critical speed and stiffness. The pitch of a screw shaft is also proportional to the number of starts in the shaft.

Helix angle

The helix angle of a screw shaft is the angle formed between the circumference of the cylinder and its helix. Both of these angles must be equal to 90 degrees. The larger the lead angle, the smaller the helix angle. Some reference materials refer to angle B as the helix angle. However, the actual angle is derived from calculating the screw geometry. Read on for more information. Listed below are some of the differences between helix angles and lead angles.
High helix screws have a long lead. This length reduces the number of effective turns of the screw. Because of this, fine pitch screws are usually used for small movements. A typical example is a 16-mm x 5-inch screw. Another example of a fine pitch screw is a 12x2mm screw. It is used for small moves. This type of screw has a lower lead angle than a high-helix screw.
A screw’s helix angle refers to the relative angle of the flight of the helix to the plane of the screw axis. While screw helix angles are not often altered from the standard square pitch, they can have an effect on processing. Changing the helix angle is more common in two-stage screws, special mixing screws, and metering screws. When a screw is designed for this function, it should be able to handle the materials it is made of.
screwshaft

Size

The diameter of a screw is its diameter, measured from the head to the shaft. Screw diameters are standardized by the American Society of Mechanical Engineers. The diameters of screws range from 3/50 inches to 16 inches, and more recently, fractions of an inch have been added. However, shaft diameters may vary depending on the job, so it is important to know the right size for the job. The size chart below shows the common sizes for screws.
Screws are generally referred to by their gauge, which is the major diameter. Screws with a major diameter less than a quarter of an inch are usually labeled as #0 to #14 and larger screws are labeled as sizes in fractions of an inch. There are also decimal equivalents of each screw size. These measurements will help you choose the correct size for your project. The screws with the smaller diameters were not tested.
In the previous section, we described the different shaft sizes and their specifications. These screw sizes are usually indicated by fractions of an inch, followed by a number of threads per inch. For example, a ten-inch screw has a shaft size of 2” with a thread pitch of 1/4″, and it has a diameter of 2 inches. This screw is welded to a two-inch Sch. 40 pipe. Alternatively, it can be welded to a 9-inch O.A.L. pipe.
screwshaft

Shape

Screws come in a wide variety of sizes and shapes, from the size of a quarter to the diameter of a U.S. quarter. Screws’ main function is to hold objects together and to translate torque into linear force. The shape of a screw shaft, if it is round, is the primary characteristic used to define its use. The following chart shows how the screw shaft differs from a quarter:
The shape of a screw shaft is determined by 2 features: its major diameter, or distance from the outer edge of the thread on 1 side to the inner smooth surface of the shaft. These are generally 2 to 16 millimeters in diameter. Screw shafts can have either a fully threaded shank or a half-threaded shank, with the latter providing better stability. Regardless of whether the screw shaft is round or domed, it is important to understand the different characteristics of a screw before attempting to install it into a project.
The screw shaft’s diameter is also important to its application. The ball circle diameter refers to the distance between the center of 2 opposite balls in contact with the grooves. The root diameter, on the other hand, refers to the distance between the bottommost grooves of the screw shaft. These are the 2 main measurements that define the screw’s overall size. Pitch and nominal diameter are important measurements for a screw’s performance in a particular application.

Lubrication

In most cases, lubrication of a screw shaft is accomplished with grease. Grease is made up of mineral or synthetic oil, thickening agent, and additives. The thickening agent can be a variety of different substances, including lithium, bentonite, aluminum, and barium complexes. A common classification for lubricating grease is NLGI Grade. While this may not be necessary when specifying the type of grease to use for a particular application, it is a useful qualitative measure.
When selecting a lubricant for a screw shaft, the operating temperature and the speed of the shaft determine the type of oil to use. Too much oil can result in heat buildup, while too little can lead to excessive wear and friction. The proper lubrication of a screw shaft directly affects the temperature rise of a ball screw, and the life of the assembly. To ensure the proper lubrication, follow the guidelines below.
Ideally, a low lubrication level is appropriate for medium-sized feed stuff factories. High lubrication level is appropriate for larger feed stuff factories. However, in low-speed applications, the lubrication level should be sufficiently high to ensure that the screws run freely. This is the only way to reduce friction and ensure the longest life possible. Lubrication of screw shafts is an important consideration for any screw.

China Professional Tapered Roller Bearing 32307/Tractor Bearing/Auto Parts/Car Accessories/Roller Bearing     near me supplier China Professional Tapered Roller Bearing 32307/Tractor Bearing/Auto Parts/Car Accessories/Roller Bearing     near me supplier